
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Necro ML: Generating OCaml Interpreters
Louis Noizet
Alan Schmitt

Abstract
We present Necro ML, a tool which allows to generate in-
terpreters from skeletal semantics in a modular way, using
monads to handle different ways to interpret computations.

ACM Reference Format:
Louis Noizet and Alan Schmitt. 2022. Necro ML: Generating OCaml
Interpreters. In Proceedings of ACM Conference (Conference’17).
ACM,NewYork, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Skel
Skel [2] is a statically typed domain specific language to
describe operational semantics of programming languages.
We call Skel codes “skeletal semantics”. It is both light and
powerful, and the skeletal semantics can be used to gener-
ate OCaml interpreters, Coq formalization, and debuggers,
among other things.
The Skel language is closely based on ML with an added

construct called branching to perform non-deterministic
computations. A skeletal semantics is a list of type declara-
tions and term declarations. Declarations can be unspecified,
which means we just declare that a type or a term exists.
For terms, we give its type but not its implementation. This
lets us hide internal representations that do not matter or
whose specification will be done later. Declarations can also
be specified, in which case we have to give a definition.
Type definitions can be of three sorts: variant types, i.e.,

algebraic data types, defined by their constructors and the
type of their arguments; record types, defined by their fields
and the type they each carry; and type aliases, which can-
not be circularly defined. Types also allow arrow types and
product types, similarly to other functional languages.

Skeletal expressions are either terms or skeletons. The latter
is used to represent computations, while the former serves to
represent evaluated values. This is similar to computational
𝜆-calculus, defined by Moggi [5], extended for ML constructs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Here is an example of a skeletal semantics with specified
and unspecified types and terms:

type ident
type term =

| Var ident
| Lam (ident, term)
| App (term, term)

val subst: (ident, term, term) → term
val ss (t:term): term =

match t with
| App (t1, t2) ->

branch
let t1' = ss t1 in
App (t1', t2)

or
let t2' = ss t2 in
App (t1, t2')

or (* beta-reduction of a redex *)
let Lam (x, body) = t1 in
let Lam _ = t2 in (* t2 is a value *)
subst (x, t2, body) (* body[x←t2] *)

end
| _ -> (branch end: term)
end

The branching in this example describes a non-deterministic
reduction of a 𝜆-expression in small step. Any branch may
be taken as long as it succeeds. For instance, the first branch
can only be taken if t1 reduces. The third branch uses a
destructuring let to ensure t1 is a lambda.

Skel is close to ML languages such as OCaml or SML, but
we chose to create a DSL so that the AST can be minimal.
Skel’s AST is defined in [6], and contains only 114 lines of
specification. This allows us to handle and extract skeletal
semantics easily.

2 OCaml generation
2.1 Necro
Asmentioned above, Necro is an ecosystem to handle skeletal
semantics. Its core is Necro Lib [6], an OCaml library file
which defines Skel’s AST and a set of functions to handle
skeletal semantics, including a parse_and_type function,
which reads a file, and returns a typed skeletal semantics.
Anyone thus has access to the AST and to basic functions,
so they can create tools to work with skeletal semantics and
extend the Necro ecosystem. In addition to Necro Lib, we
already provide some tools. One of them, presented here,

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

Conference’17, July 2017, Washington, DC, USA Louis Noizet and Alan Schmitt

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

SkeletonsJavaScript

IMP

𝜆-calculus

User

necroml
necrocoq
necrotrans
necrodebug

. . .

necrolib → necro.cma

Coq

OCaml

Debugger

Figure 1. The Necro ecosystem

is Necro ML [4], which generates OCaml interpreters from
skeletal semantics.

2.2 Necro ML
Necro ML generates an interpreter for a skeletal semantics.
As we explained in Section 1, there are some unspecified
data in the skeletal semantics. This is handled by Necro ML
in a modular way: we generate a functor MakeInterpreter,
which produces an interpreter once it is given an OCaml
implementation for unspecified types and terms.
The embedding is mainly a shallow one, but we have to

handle branches with care, since OCaml does not have a
non-deterministic construct. We will show how we handle
this in Section 3.

Let us now present the structure of a generated interpreter:
First, a module type TYPES is generated which contains the
unspecified types. Then a module type UNSPEC is provided,
for unspecified terms and types. There is a functor Unspec
that, given a module of type TYPES, creates a default in-
stantiation where every unspecified function raises an error.
One may then apply this functor and override the default
implementation of unspecified terms with the actual one.
Then, we define an INTERPRETER module type, which con-
tains the signature for all specified and unspecified terms
and types. Finally, we define the MakeInterpreter functor,
which takes into argument a module of type UNSPEC, and
produces a module of type INTERPRETER.

The Unspec functor takes an other argument, an interpre-
tation monad, which we will describe right away.

3 Interpretation monad
We explained above how we cannot use solely a shallow
embedding, because of the non-deterministic branching con-
struct. To this effect, we use an embedding monad, or inter-
pretation monad, to describe computations. So terms of type
'a are shallowly embedded as OCaml expressions of type 'a,
while skeletons of type 'a are deeply embedded as OCaml

expressions of type 'a M.t Several interpretation monads
exist. These monad must define the type 'a t, and how to
handle let-bindings and branches. The monad’s module
type is defined this way:

module type MONAD = sig
type 'a t
val ret: 'a -> 'a t
val bind: 'a t -> ('a -> 'b t) -> 'b t
val branch: (unit -> 'a t) list -> 'a t
val fail: string -> 'a t
val apply: ('a -> 'b t) -> 'a -> 'b t
val extract: 'a t -> 'a

end

The fail operator takes as input a string which consti-
tutes the error message. It is used for instance when trying
to match a pattern with a non-matching value. The bind
is used to embed let-bindings. The branch is the one that
performs the non-deterministic choice, and extract is a us-
ability construct without any theoretical meaning, which
allows to extract a value from the monad.
The first and the simplest way to instantiate this mod-

ule type is the identity monad, where 'a M.t = 'a. For
branches, we just take the first branch that succeeds:

module ID = struct
exception Branch_fail of string
type 'a t = 'a
let ret x = x
let rec branch l =
match l with
| [] -> raise (Branch_fail "No branch matches")
| b1 :: bq ->

try b1 () with Branch_fail _ -> branch bq
let fail s = raise (Branch_fail s)
let bind x f = f x
let apply f x = f x

2

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Necro ML: Generating OCaml Interpreters Conference’17, July 2017, Washington, DC, USA

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

let extract x = x
end

This seems naive but is useful in most cases with deter-
ministic programming languages where branches are used
only in non-overlapping cases. Moreover, we can randomize
the monad using the randomizing functor so that it is not
the first branches that is taken, but any random succeeding
branch. The randomizing functor is defined this way:
let shuffle l =

let () = Random.self_init () in
let lrand = List.map (fun c ->

(Random.bits (), c)) l in
List.sort compare lrand |> List.map snd

module Rand (M: MONAD) = struct
include M
let branch l =

M.branch (shuffle l)
end

Of course this does not work in all cases, and can cause
an issue if we find out later that a branch was not the right
one, in the sense that it contains a computation which fails
after the branching has completed. An example thereof is
the following:
let f =

branch
(𝜆 _ → (branch end:()))

or
(𝜆 _: () → ())

end
in f ()

The ID monad will take the first branch (and the random-
ized one may take it), and it will succeed. Afterwards, when
applying it to (), it will produce an error. The problem is
that there is no way to backtrack. This idea gave birth to a
continuation monad with a backtracking point. This monad
is defined as follows :
module ContPoly = struct

type 'b fcont = string -> 'b (* backtracking

point *)↩→

type ('a,'b) cont = 'a -> 'b fcont -> 'b
type 'a t = { cont: 'b. (('a,'b) cont -> 'b

fcont -> 'b) }↩→

let ret (x: 'a) = { cont = fun k fcont -> k

x fcont }↩→

let bind (x: 'a t) (f: 'a -> 'b t) : 'b t =
{ cont = fun k fcont -> x.cont (fun v

fcont' -> (f v).cont k fcont') fcont
}

↩→

↩→

let fail s = { cont = fun k fcont -> fcont s

}↩→

let rec branch l = { cont = fun k fcont ->

begin match l with
| [] -> fcont "No branch matches"
| b :: bs -> (b ()).cont k (fun _ ->

(branch bs).cont k fcont)↩→

end}
let apply f x = f x
let extract x = x.cont (fun a _ -> a) (fun s

-> failwith s)↩→

end

There are several other interpretation monads, and they
all have their purposes. The main point is that it is very easy
to change the interpretation monad, as no code has to be
rewritten. The only piece of code that has to change is the
choice of monad used to instantiate the Unspec functor.

4 Conclusion
Necro ML is a flexible tool to generate interpreters for pro-
gramming languages. It performs a shallow embedding of
types, and a semi-deep embedding of expressions, to handle
non-determinism. It has been shown to work on significant
files, since it has been used on an ongoing formalization of
JavaScript [3] which can already run simple programs.

Other projects have a significant overlap or development
which might be related. First, Necro Debug is a step-by-step
execution of a skeletal semantics, to describe the compu-
tation of a term.1 It uses the same approach and module
types than Necro ML, hence one can use the specification
of unspecified types and terms both in the generated inter-
preter with Necro ML, and in the generated debugger with
Necro Debug. Second, there are works to generate inter-
preters in ML with Necro Coq, by using Coq’s extraction
mechanism [1].

References
[1] Guillaume Ambal, Sergueï Lenglet, and Alan Schmitt. Certified Abstract

Machines for Skeletal Semantics. In Certified Programs and Proofs,
Philadelphia, United States, January 2022.

[2] Martin Bodin, Philippa Gardner, Thomas Jensen, and Alan Schmitt.
Skeletal Semantics and their Interpretations. Proceedings of the ACM
on Programming Languages, 44:1–31, 2019. URL: https://hal.inria.fr/hal-
01881863, doi:10.1145/3290357.

[3] Adam Khayam, Louis Noizet, and Alan Schmitt. JSkel: Towards a For-
malization of JavaScript’s Semantics, 2022. Submitted for publication.

[4] Enzo Crance Martin Bodin, Nathanaëlle Courant and Louis Noizet.
Necro Ocaml Generator, https://gitlab.inria.fr/skeletons/necro-ml. URL:
https://gitlab.inria.fr/skeletons/necro-ml.

[5] Eugenio Moggi. Computational lambda-calculus and monads. Proceed-
ings. Fourth Annual Symposium on Logic in Computer Science, 1988.

[6] Louis Noizet. Necro Library, https://gitlab.inria.fr/skeletons/necro. URL:
https://gitlab.inria.fr/skeletons/necro.

1https://skeletons.inria.fr/debugger/index_while.html

3

https://hal.inria.fr/hal-01881863
https://hal.inria.fr/hal-01881863
https://doi.org/10.1145/3290357
https://gitlab.inria.fr/skeletons/necro-ml
https://gitlab.inria.fr/skeletons/necro
https://skeletons.inria.fr/debugger/index_while.html

	Abstract
	1 Skel
	2 OCaml generation
	2.1 Necro
	2.2 Necro ML

	3 Interpretation monad
	4 Conclusion
	References

